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Ex 9.1 (The chain rule on Banach spaces)
Let X,Y,Z be Banach spaces and U C X, V C Y be open. Assume that F' : U — Y is
differentiable in 2y € U with F(zg) € V and that G : V — Z is differentiable in F'(z(). Show
that G o F : U — Z is differentiable in xq with

(G ¢) F)/(.CE()) = G/(F<£L'0))F/([B0)
Hint: Using little-o notation simplifies the calculations.

Solution 9.1 : Using little-o notation, we have for h € X with 2o+ h € U and y € Y with
F(xg) +y €V that

F(ZUO + h) = F(Qfo) + F,(l‘o)h + O(Hth),
G(F(xo) +y) = G(F(x0)) + G'(F(x0))y + ollylly)-

For ||h||x small enough we can apply these equations for y = F'(xzo)h + o(]|h||x), so that

G(F(zo+ h)) = G(F(x0) + F'(zo)h + o([|h]]x))
G(F(x0)) + G'(F(w0)) (F'(xo)h + o([[h]|x)) + o[ F' (o) h + ol Al x) I)-

Since F'(xy) and G'(F(z¢)) are bounded, linear operators, it holds that G'(F(x¢))(o(||h]|x)) =
o(l[2]1x) (in Z) and o |F"(zo)h + o [[a]1x) ) = o([[h]lx) (also in Z). Hence

G(F(xo + h)) = G(F(x0)) + G'(F (o)) F" (wo)h + o(||h] x),
which proves the claim.

Ex 9.2 (Fréchet-differentiability)
a) Let f: R — R be a C''-function. Show that

uHF(u):/O f(u(z))dx

is differentiable on C([0, 1]) equipped with the maximum norm and compute its derivative. Is
the derivative continuous ?

b) Let k € C([0,1] x [0,1]), f € C*(]0,1] x R) and consider the Hammerstein operator

u— F(u) = /0 k(- x)f(z,u(z))d.



Check that F': C([0,1]) — C([0,1]) is continuously differentiable.
Solution 9.2 :
a) Fix u € C([0, 1]). We claim that the derivative of F" at u is given by

F’(u)v:/o [ (u(z))v(z) dz.

First note that this functional is indeed linear in v and bounded since

Pl < ([ 17 @)dn) Pl

and the integral above is finite since by continuity u is bounded and f’ is bounded on compact
subsets of R. Next, we show that F”(u) is indeed the derivative of F' at u. Let h € C([0,1]). By
the mean value theorem for real-valued functions we deduce that

|f (w(z) + h(x)) = f(u(z)) = [ (u(z))h(z)] < Sup |f (u(z) + th(z)) — [ (u(z))] - [h(z)]
< sup |f'(u(z) +th(x)) — f'(w(@)] - [|Pllcon)-

te(0,1]

Now consider a sequence h,, € C([0,1]) such that h,, — 0. Then by the above estimate

[F(utho) = F(u) = F'(w)hal _ 1 / [F(u() + ha()) = f(u(@)) = f'(u(@) ()| da
o 1Pnllco.n Jo

Vnlleon
< / sup | F/(u(w) + tha(x)) — F/(u(x))] dz.

t€[0,1]

Since §,, 1= maxzcp,1] |hn(x)| converges to 0 as n — 400 and up := max,cp ] |u(z)| < +o00, it
follows that

/0 sup |f'(u(x) + thy(z)) — f'(u(z))|de < sup  sup |[f'(u+0)— f'(u)]

te(0,1] u€[—ug,ug) 0<9<6n

Note that f’ is uniformly continuous on every compact interval of R. Hence the last term tends
to 0 as n — +o0o. This shows the differentiability of F'.

Yes, the derivative F’(u) depends continuously on wu; let us show it. Let u,, € C([0,1]) such
that u,, — v uniformly on [0, 1]. Then for every v € C([0, 1]) with |[v|c(jo,1) = 1 we have that

|F' (un)v — F'(u)o] < /0 [f'(un(@)) = f'(w(z)][o(z)| dz < /0 [ (un(2)) = f(u())] dz

The last term is independent of v, so that taking the supremum over such functions v we deduce
that )

1F (un) = F'(w)lleqoy < / [ (un()) = f'(u(z))] d.

0

The last term tends to zero by the dominated convergence theorem since the (u,,),, are uniformly
bounded, and f’ is bounded on compact sets. Hence F € C'(C([0,1]), R).
b) Fix u € C([0,1]) and a direction v € C([0, 1]). Since for every y € [0, 1] we have
f(ac,u(x) + 81)(1‘)) - f(x,u(x))

£

dx

™ | =

[F(u+e0)(y) — Fu)(y)] = / Ky o)



and the function under the integral converges (pointwise) to d, f(x, u(z)) v(z) for e — 0 (where
0, f denotes the partial derivative of f(z,y) w.r.t. y), we expect the derivative of F' to be given
by

F’(u)v:/o k(- 2) 0, f (2, u(x)) v(z) da.

Both functions £ and J, f are continuous, thus
I (w)vllogon / k(- 2) oo [0, f (@ () o(z) | da
/ 52 leoan 0,7 (2. u(z))| dz ) o leqony

so the operator F’(u) is bounded, in addition to being obviously linear.

To prove that F’(u) is indeed the Fréchet derivative of F at u, note that for all v € C(]0, 1])
1F(u+ v) = Fu) = F'(u)vlleo)
/ 1EC 2)lleqouy 1f (@, u(@) + () = f(, u(z) = 0y f (2, u(x))v(z)] dz
and by using the mean value theorem for the function y — f(x,y)

|f (2, u(@) +v(2)) = f(z,u(@) — Oy f (2, u(z))v(z)]
< os<li£)1 0y f(z,u(x) +tv(x)) — 0y f (x, u(z))| |v(z)]
< os<1il<)1 0y f (x, u(x) + to(x)) — Oy f(z, u(x))] |[v]lcgo,1)-

Since 0y f is uniformly continuous on [0, 1] X [—|lu|/¢(o,1) — 1, [|u|lc o7y + 1], for any € > 0 there
exists 6 > 0 such that |z| < ¢ implies that

|ayf(xay + Z) - 8yf(l’,y)‘ <é

whenever x € [0,1], |y| < |lullcqo))-
Thus ||v||c(o)) < ¢ implies

sup [0, f(z, u(x) + to(z)) - 8,f (a,u(z))| < ¢

0<t<1

and so

[£(u+v) = Flu) = F'(wv]eqr / e

dr)e
||U||C([o,1 Hc ([0,1)) d@

for [|v]|¢(o,1) < €. Since € was arbitrary, this completes the proof.

Finally, to see that u — F’(u) is continuous, note that for any wuy,us € C([0,1])

[F (ua) = F'(ua)llccqoany = sup |[F(ua)v — F'(u)vllcqo)

villvlle o, <1

< [ Ik Dl i) - S ) dr

Therefore, the mean value theorem and the same reasoning used to show differentiability can
be employed to demonstrate the continuity.

Ex 9.3 (Gateaux=Fréchet for Lipschitz functions on finite-dimensional spaces®)
Suppose F': X — Y is a Lipschitz function from a finite-dimensional Banach space X to



a (possibly infinite-dimensional) Banach space Y. Prove that if F' is Gateaux-differentiable at
some point z, then it is also Fréchet-differentiable at that point.

Ex 9.4 (Gateaux-differentiability)

a) We saw in the lecture that the function F' : L?([0,1]) — L?([0,1]) defined by F(u)(x) =
cos(u(z)) is not differentiable in 0 (actually it is nowhere differentiable). Prove that it is
Gateaux-differentiable on L?([0,1]) with 6F(u)v = —(sinou) - v.

b) Show that if the function ug € C([0, 1]) is such that |ug| attains its maximum on [0, 1] at a
single point ¢y, the norm u +— ||ul| = sup,¢jo 1) [u(z)| on the Banach space C([0, 1]) is Gateaux
differentiable at ug and for any direction v € C([0, 1])

d|uol|v = v(to) - sign ug(to)-

¢)* Show that the norm is not Gateaux differentiable at ug if uy does not satisfy the above
assumption.

Hint: Show that for any maximizer ¢y of |u(t)| the map found in b) has to coincide with the Gateaux-
derivative.

Solution 9.4 :
a) Fix u € L*([0,1]) and v € L*([0, 1]) such that ||v||z2(jo,1)) = 1. Then for any € > 0, the mean
value theorem for real valued functions yields that

| cos(u(x) + ev(x)) — cos(u(z)) + sin(u(z))ev(z)| < elv(x)] |§|<S;1|£)(x)| | sin(u(x)) — sin(u(x) + &)

Integrating the square of this inequality over [0, 1], we find that

+ (sin ou)v

HF(u—Fev)—F(u)

2 1
2 . . )
£ L2(0.)) S/0 lv(z)]? sup |sin(u(x)) — sin(u(z) + &)|* dz

€l <elo()]

We argue that the last term vanishes when ¢ — 0. Since v(x) is finite almost everywhere, the
integrand converges to 0 as ¢ — 0 for almost every z € [0, 1]. Moreover, as |sin(z)| < 1 on the
real line, we can bound the integrand by 4|v(z)|?, which is integrable and independent of e.
Thus we can apply the dominated convergence theorem and conclude the proof.

b) Let v € C([0,1]) be a fixed direction. We need to study the limit

o+ <] — [
e—0 g
We have ||ug|| = |uo(to)| and denoting t. € [0, 1] a point where ug + cv attains its maximum we

also have
luo + ev|| = |uo(te) + ev(te)| > |uo(to) + cv(to)]-

As a consequence,

0 < uo(to)| = |uo(te)] < |uo(to) + cv(to)| + |ev(to)] — fuo(t.)]
< luo(te) + ev(te)| + lev(to)| — [uo(te)| < lel(Ju(te)] + [v(to)]).

thus we get lim. ¢ |uo(t:)| = |uo(to)|. Since [0, 1] is compact, we can assume that ¢. converges
to some t* € [0, 1]. Because |ug(ty)| > |uo(t)| for any t # to, it follows that t* = o, so we have

li = 1.
g e =t



Assume that ug(tg) > 0. Then, for all £ small enough, we have
lup(te) + ev(te)| — |uo(to)| = uo(te) + cv(te) — uo(to) < ev(te)

and
|UO<t0) + €U(t0)| — ’uO<t0)‘ = UO(to) + SU(to) — UO<tQ) = €'U(t0>
therefore
ev(to) < |uo(tz) +ev(te)] — |uo(to)] < ev(t.)
which gives
iy %o +evll = JJuoll _
e—0 g

’U(t()).

c) To show that the condition is necessary, suppose that there exist distinct ¢o,¢; € [0, 1] such
that
|U0(t0)| = |U0(t1)| > |u0(t)‘7 for all t € [O, 1]

Let v € C([0,1]). Note that we have
[ull + ev(to)sgn (u(to)) = (ulto) + ev(to))sgn (u(to)) < [lu+ evl]
If the norm were Gateaux-differentiable in w, this would imply that
dllullv = v(to)sgn (u(to)).

By linearity of the derivative and arbitrariness of v, this can only hold if there is equality, so
that

d||ul|v = v(to)sgn (u(to)).
But by the same argument we find that

Ofullv = v(tr)sgn (u(tr))-

This cannot hold for all v € C(]0,1]), so that the norm is not Gateaux-differentiable in u.



