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Ex 9.1 (The chain rule on Banach spaces)
Let X, Y, Z be Banach spaces and U ⊂ X, V ⊂ Y be open. Assume that F : U → Y is
differentiable in x0 ∈ U with F (x0) ∈ V and that G : V → Z is differentiable in F (x0). Show
that G ◦ F : U → Z is differentiable in x0 with

(G ◦ F )′(x0) = G′(F (x0))F
′(x0).

Hint: Using little-o notation simplifies the calculations.

Solution 9.1 : Using little-o notation, we have for h ∈ X with x0 + h ∈ U and y ∈ Y with
F (x0) + y ∈ V that

F (x0 + h) = F (x0) + F ′(x0)h+ o(∥h∥X),
G(F (x0) + y) = G(F (x0)) +G′(F (x0))y + o(∥y∥Y ).

For ∥h∥X small enough we can apply these equations for y = F ′(x0)h+ o(∥h∥X), so that

G(F (x0 + h)) = G(F (x0) + F ′(x0)h+ o(∥h∥X))
= G(F (x0)) +G′(F (x0))(F

′(x0)h+ o(∥h∥X)) + o(∥F ′(x0)h+ o(∥h∥X)∥Y ).

Since F ′(x0) and G′(F (x0)) are bounded, linear operators, it holds that G
′(F (x0))(o(∥h∥X)) =

o(∥h∥X) (in Z) and o(∥F ′(x0)h+ o(∥h∥X)∥Y ) = o(∥h∥X) (also in Z). Hence

G(F (x0 + h)) = G(F (x0)) +G′(F (x0))F
′(x0)h+ o(∥h∥X),

which proves the claim.

Ex 9.2 (Fréchet-differentiability)
a) Let f : R → R be a C1-function. Show that

u 7→ F (u) =

∫ 1

0

f(u(x)) dx

is differentiable on C([0, 1]) equipped with the maximum norm and compute its derivative. Is
the derivative continuous ?

b) Let k ∈ C([0, 1]× [0, 1]), f ∈ C1([0, 1]× R) and consider the Hammerstein operator

u 7→ F (u) =

∫ 1

0

k( · , x)f(x, u(x)) dx.



Check that F : C([0, 1]) → C([0, 1]) is continuously differentiable.
Solution 9.2 :
a) Fix u ∈ C([0, 1]). We claim that the derivative of F at u is given by

F ′(u)v =

∫ 1

0

f ′(u(x))v(x) dx.

First note that this functional is indeed linear in v and bounded since

|F ′(u)v| ≤
(∫ 1

0

|f ′(u(x))| dx
)
∥v∥C([0,1])

and the integral above is finite since by continuity u is bounded and f ′ is bounded on compact
subsets of R. Next, we show that F ′(u) is indeed the derivative of F at u. Let h ∈ C([0, 1]). By
the mean value theorem for real-valued functions we deduce that

|f(u(x) + h(x))− f(u(x))− f ′(u(x))h(x)| ≤ sup
t∈[0,1]

|f ′(u(x) + th(x))− f ′(u(x))| · |h(x)|

≤ sup
t∈[0,1]

|f ′(u(x) + th(x))− f ′(u(x))| · ∥h∥C([0,1]).

Now consider a sequence hn ∈ C([0, 1]) such that hn → 0. Then by the above estimate

|F (u+ hn)− F (u)− F ′(u)hn|
∥hn∥C([0,1])

≤ 1

∥hn∥C([0,1])

∫ 1

0

|f(u(x) + hn(x))− f(u(x))− f ′(u(x))hn(x)| dx

≤
∫ 1

0

sup
t∈[0,1]

|f ′(u(x) + thn(x))− f ′(u(x))| dx.

Since δn := maxx∈[0,1] |hn(x)| converges to 0 as n → +∞ and u0 := maxx∈[0,1] |u(x)| < +∞, it
follows that∫ 1

0

sup
t∈[0,1]

|f ′(u(x) + thn(x))− f ′(u(x))| dx ≤ sup
u∈[−u0,u0]

sup
0≤δ<δn

|f ′(u+ δ)− f ′(u)|.

Note that f ′ is uniformly continuous on every compact interval of R. Hence the last term tends
to 0 as n → +∞. This shows the differentiability of F .

Yes, the derivative F ′(u) depends continuously on u ; let us show it. Let un ∈ C([0, 1]) such
that un → u uniformly on [0, 1]. Then for every v ∈ C([0, 1]) with ∥v∥C([0,1]) = 1 we have that

|F ′(un)v − F ′(u)v| ≤
∫ 1

0

|f ′(un(x))− f ′(u(x))||v(x)| dx ≤
∫ 1

0

|f ′(un(x))− f ′(u(x))| dx

The last term is independent of v, so that taking the supremum over such functions v we deduce
that

∥F ′(un)− F ′(u)∥C([0,1])′ ≤
∫ 1

0

|f ′(un(x))− f ′(u(x))| dx.

The last term tends to zero by the dominated convergence theorem since the (un)n are uniformly
bounded, and f ′ is bounded on compact sets. Hence F ∈ C1(C([0, 1]),R).

b) Fix u ∈ C([0, 1]) and a direction v ∈ C([0, 1]). Since for every y ∈ [0, 1] we have

1

ε

[
F (u+ εv)(y)− F (u)(y)

]
=

∫ 1

0

k(y, x)
f
(
x, u(x) + εv(x)

)
− f(x, u(x))

ε
dx



and the function under the integral converges (pointwise) to ∂yf(x, u(x)) v(x) for ε → 0 (where
∂yf denotes the partial derivative of f(x, y) w.r.t. y), we expect the derivative of F to be given
by

F ′(u)v =

∫ 1

0

k( · , x) ∂yf(x, u(x)) v(x) dx.

Both functions k and ∂yf are continuous, thus

∥F ′(u)v∥C([0,1]) ≤
∫ 1

0

∥k( · , x)∥C([0,1]) |∂yf(x, u(x)) v(x)| dx

≤
(∫ 1

0

∥k( · , x)∥C([0,1]) |∂yf(x, u(x))| dx
)
∥v∥C([0,1])

so the operator F ′(u) is bounded, in addition to being obviously linear.

To prove that F ′(u) is indeed the Fréchet derivative of F at u, note that for all v ∈ C([0, 1])

∥F (u+ v)− F (u)− F ′(u)v∥C([0,1])

≤
∫ 1

0

∥k( · , x)∥C([0,1]) |f(x, u(x) + v(x))− f(x, u(x))− ∂yf(x, u(x))v(x)| dx

and by using the mean value theorem for the function y 7→ f(x, y)

|f(x, u(x) + v(x))−f(x, u(x))− ∂yf(x, u(x))v(x)|

≤ sup
0≤t≤1

|∂yf(x, u(x) + tv(x))− ∂yf(x, u(x))| |v(x)|

≤ sup
0≤t≤1

|∂yf(x, u(x) + tv(x))− ∂yf(x, u(x))| ∥v∥C([0,1]).

Since ∂yf is uniformly continuous on [0, 1]× [−∥u∥C([0,1])−1, ∥u∥C([0,1])+1], for any ε > 0 there
exists δ > 0 such that |z| < δ implies that

|∂yf(x, y + z)− ∂yf(x, y)| < ε

whenever x ∈ [0, 1], |y| ≤ ∥u∥C([0,1]).
Thus ∥v∥C([0,1]) < δ implies

sup
0≤t≤1

|∂yf(x, u(x) + tv(x))− ∂yf(x, u(x))| < ε

and so
∥F (u+ v)− F (u)− F ′(u)v∥C([0,1])

∥v∥C([0,1])

≤
(∫ 1

0

∥k( · , x)∥C([0,1]) dx
)
ε

for ∥v∥C([0,1]) ≤ ε. Since ε was arbitrary, this completes the proof.

Finally, to see that u 7→ F ′(u) is continuous, note that for any u1, u2 ∈ C([0, 1])

∥F ′(u1)− F ′(u2)∥L(C([0,1])) = sup
v:∥v∥C([0,1])≤1

∥F ′(u1)v − F ′(u2)v∥C([0,1])

≤
∫ 1

0

∥k( · , x)∥C([0,1])|f(x, u1(x))− f(x, u2(x))| dx.

Therefore, the mean value theorem and the same reasoning used to show differentiability can
be employed to demonstrate the continuity.

Ex 9.3 (Gâteaux=Fréchet for Lipschitz functions on finite-dimensional spaces∗)
Suppose F : X → Y is a Lipschitz function from a finite-dimensional Banach space X to



a (possibly infinite-dimensional) Banach space Y . Prove that if F is Gâteaux-differentiable at
some point x, then it is also Fréchet-differentiable at that point.

Ex 9.4 (Gâteaux-differentiability)
a) We saw in the lecture that the function F : L2([0, 1]) → L2([0, 1]) defined by F (u)(x) =
cos(u(x)) is not differentiable in 0 (actually it is nowhere differentiable). Prove that it is
Gâteaux-differentiable on L2([0, 1]) with δF (u)v = −(sin ◦u) · v.
b) Show that if the function u0 ∈ C([0, 1]) is such that |u0| attains its maximum on [0, 1] at a
single point t0, the norm u 7→ ∥u∥ = supx∈[0,1] |u(x)| on the Banach space C([0, 1]) is Gâteaux
differentiable at u0 and for any direction v ∈ C([0, 1])

δ∥u0∥v = v(t0) · signu0(t0).

c)∗ Show that the norm is not Gâteaux differentiable at u0 if u0 does not satisfy the above
assumption.
Hint: Show that for any maximizer t0 of |u(t)| the map found in b) has to coincide with the Gâteaux-

derivative.

Solution 9.4 :
a) Fix u ∈ L2([0, 1]) and v ∈ L2([0, 1]) such that ∥v∥L2([0,1]) = 1. Then for any ε > 0, the mean
value theorem for real valued functions yields that

| cos(u(x) + εv(x))− cos(u(x)) + sin(u(x))εv(x)| ≤ ε|v(x)| sup
|ξ|<ε|v(x)|

| sin(u(x))− sin(u(x) + ξ)|

Integrating the square of this inequality over [0, 1], we find that∥∥∥F (u+ εv)− F (u)

ε
+ (sin ◦u)v

∥∥∥2

L2([0,1])
≤

∫ 1

0

|v(x)|2 sup
|ξ|<ε|v(x)|

| sin(u(x))− sin(u(x) + ξ)|2 dx

We argue that the last term vanishes when ε → 0. Since v(x) is finite almost everywhere, the
integrand converges to 0 as ε → 0 for almost every x ∈ [0, 1]. Moreover, as | sin(x)| ≤ 1 on the
real line, we can bound the integrand by 4|v(x)|2, which is integrable and independent of ε.
Thus we can apply the dominated convergence theorem and conclude the proof.

b) Let v ∈ C([0, 1]) be a fixed direction. We need to study the limit

lim
ε→0

∥u0 + εv∥ − ∥u0∥
ε

.

We have ∥u0∥ = |u0(t0)| and denoting tε ∈ [0, 1] a point where u0 + εv attains its maximum we
also have

∥u0 + εv∥ = |u0(tε) + εv(tε)| ≥ |u0(t0) + εv(t0)|.

As a consequence,

0 < |u0(t0)| − |u0(tε)| ≤ |u0(t0) + εv(t0)|+ |εv(t0)| − |u0(tε)|
≤ |u0(tε) + εv(tε)|+ |εv(t0)| − |u0(tε)| ≤ |ε|

(
|v(tε)|+ |v(t0)|

)
,

thus we get limε→0 |u0(tε)| = |u0(t0)|. Since [0, 1] is compact, we can assume that tε converges
to some t∗ ∈ [0, 1]. Because |u0(t0)| > |u0(t)| for any t ̸= t0, it follows that t

∗ = t0, so we have

lim
ε→0

tε = t0.



Assume that u0(t0) > 0. Then, for all ε small enough, we have

|u0(tε) + εv(tε)| − |u0(t0)| = u0(tε) + εv(tε)− u0(t0) ≤ εv(tε)

and
|u0(t0) + εv(t0)| − |u0(t0)| = u0(t0) + εv(t0)− u0(t0) = εv(t0)

therefore
εv(t0) ≤ |u0(tε) + εv(tε)| − |u0(t0)| ≤ εv(tε)

which gives

lim
ε→0

∥u0 + εv∥ − ∥u0∥
ε

= v(t0).

c) To show that the condition is necessary, suppose that there exist distinct t0, t1 ∈ [0, 1] such
that

|u0(t0)| = |u0(t1)| ≥ |u0(t)|, for all t ∈ [0, 1].

Let v ∈ C([0, 1]). Note that we have

∥u∥+ εv(t0)sgn (u(t0)) = (u(t0) + εv(t0))sgn (u(t0)) ≤ ∥u+ εv∥

If the norm were Gâteaux-differentiable in u, this would imply that

δ∥u∥v ≥ v(t0)sgn (u(t0)).

By linearity of the derivative and arbitrariness of v, this can only hold if there is equality, so
that

δ∥u∥v = v(t0)sgn (u(t0)).

But by the same argument we find that

δ∥u∥v = v(t1)sgn (u(t1)).

This cannot hold for all v ∈ C([0, 1]), so that the norm is not Gâteaux-differentiable in u0.


